(Following Paper ID and Roll No. to	be filled in your	· An	swe	er B	ook)		
PAPERID: 0321	Roll No.						

B.Tech.

(SEMESTER-IV) THEORY EXAMINATION, 2011-12

ELECTRONIC CIRCUITS

Time: 3 Hours]

/ Total Marks: 100

Note: Attempt questions from all sections. Assume missing data if any.

Section - A

1. Answer all parts.

 $10\times2=20$

- (a) What is the minimum number of terminals required by a single Op-Amp? What is the minimum number of terminals required on an integrated-circuit package containing four Op-Amps?
- (b) Design a simple current divider that will reduce the current provided to a 1 $K\Omega$ load to 20% of that available from the source.
- (c) Design an inverting closed loop amplifier having a gain of -10 and an input resistance of $100 \text{ K}\Omega$. Calculate values of R_1 and R_2 .
- (d) Define full-power band-width in an Op-Amp.
- (e) For NMOS transistor, write the drain current expression in Triode region and Saturation region.
- (f) Draw a large-signal equivalent circuit model of the n-channel MOSFET in saturation, incorporating the output resistance.
- (g) Calculate β for two transistors for which $\alpha = 0.99$ and 0.98.
- (h) A BJT having $\beta = 100$ is biased at a dc collector current of 1 mA. Find the value of g_m and r_e .
- (i) Define the input common mode range of a Differential Amplifier.
- (j) Define Transconductance and Trans-resistance Amplifiers.

2. Attempt any three parts:

 $3\times10=30$

- (a) (i) Consider the basic differential amplifier circuit with $R_1 = R_3 = 2 \text{ k}\Omega$ and $R_2 = R_4 = 200 \text{ k}\Omega$. Find the value of A_d , R_{id} , and R_0 .
 - (ii) An Op-Amp having a slew-rate of 20 V/μs is to be used in the unity-gain follower configuration, with input pulse that rises from 0 to 3V. What is the shortest pulse that can be used while ensuring full-amplitude output?
- (b) A transistor amplifier is fed with a signal source having an open-circuit voltage v_{sig} of 10 mV and internal resistance R_{sig} of 100 k Ω . The voltage v_i at the amplifier input and output voltage v_0 are measured both without and with load resistance $R_L = 10 \text{ k}\Omega$ connected to the amplifier output. The measured results are as follows:

	$v_i(mV)$	$v_0 (mV)$			
Without R _L	9	90			
With R _L connected	8	70			

Find all the amplifier parameters.

- (c) Draw the circuit diagram of single stage CE amplifier, implement hybrid- π model and T-model for it and calculate expressions for i_e , g_m and i_b .
- (d) Draw the NMOS differential amplifier with a common-mode input signal and calculate the Common Mode Gain and CMRR. Also explain the effect of R_D mismatch on CMRR.
- (e) Design a series series feedback amplifier and calculate expressions for A_p , R_{of} and R_{if}

Section - C

Attempt all parts.

 $5 \times 10 = 50$

- 3. Attempt any **two** parts.
 - (a) A MOSFET is to operate at $I_D = 0.1$ mA and is to have $g_m = 1$ mA/V. If $k_n = 50 \mu$ A/V², find the required W/L ratio and the overdrive voltage.
 - (b) Draw the high-frequency equivalent circuit model for the MOSFET and list all MOSFET internal capacitances.
 - (c) For the CS amplifier, determine its low frequency transfer function.

4. Attempt any two parts.

- (a) Draw the circuit diagram of biasing the MOSFET using a constant-current source and calculate the expression for I in terms of I_{REF}.
- (b) Discuss the various internal capacitances in detail for BJT.
- (c) Draw the circuit diagram of CB amplifier and calculate expression for short-circuit current gain with T-model.

5. Attempt any two parts.

- (a) Consider a CE circuit using a BJT having $I_S = 10^{-15}$ A, a collector resistance $R_C = 6.8 \text{ k}\Omega$, and a power supply $V_{CC} = 10 \text{ V}$.
 - (i) Determine the value of the bias voltage V_{BE} required to operate the transistor at $V_{CE} = 3.2 \text{ V}$. What is the corresponding value of I_C ?
 - (ii) Find the voltage gain A_V at this bias point.
- (b) Explain how to operate the BJT as a switch.
- (c) Calculate the R_{in} or R_{out} for the CC amplifier.

6. Attempt any two parts.

- (a) Draw the circuit diagram of BJT differential pair and explain its large-signal operation.
- (b) Calculate the transconductance G_m for the active-loaded MOS differential pair.
- (c) For the active-loaded BJT differential amplifier let I = 0.8 mA, $V_A = 100$ mV and $\beta = 100$ find $G_m & R_o$.

7. Attempt any **two** parts.

- (a) Explain how Negative feedback affects Gain, Band-width & Noise.
- (b) Draw the circuit diagram of a Wien-bridge oscillator and derive an expression for the frequency of oscillations.
- (c) For the Hartley Oscillator, derive an expression for the frequency of oscillation.